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1. Introduction

The magnetohydrodynamics (MHD) is often used to describe many important problems in astrophysics, space propul-
sions, magnetic-confinement fusion and so on. For these problems, the numerical simulation is a powerful and important
analytical tool.

Time-marching MHD simulations are, in particular, challenging because the MHD model contains a wide range of time
scales even in the ideal MHD limit. In the ideal MHD model, there are three types of MHD waves, each with a characteristic
wave speed; the fast wave, the Alfvén wave and the slow wave. Although the transit time of the MHD wave is very small in
the presence of a strong magnetic field, research often focuses on the steady states of the field and phenomena with much a
longer time scale. Thus, for explicit time integration, the calculations need an enormous number of time steps because the
time step interval is restricted by the fastest MHD wave (the fast wave) from the CFL conditions.

There have been a number of applications of the implicit methods to MHD equations (for example, see [1–5]). Whereas
standard central difference methods were used in most previous works, few have applied an approximate Riemann solver to
implicit methods [1,2].

The motivation of our study is to introduce a simple and easy to code implicit scheme to MHD, using an approximate
Riemann solver and a Jacobian-free technique. We adopted a fully implicit scheme called the ADI-SGS scheme [6,7], which
is used for hydrodynamic equations, and simply applied this scheme to ideal one-fluid MHD equations. The ADI-SGS scheme
is derived by combining alternative direction implicit (ADI) factorization [8] with the lower–upper symmetric–Gauss–
Seidel (LU-SGS) method [9]. Coding of the ADI-SGS scheme is easier than the ADI scheme, and vectorization or parallelization
is much easier than the LU-SGS scheme. Therefore, the ADI-SGS scheme seems to be more suitable for large scale
computing.
. All rights reserved.
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2. Formulation of the ADI-SGS scheme

The basic formulations are briefly explained. The ADI-SGS scheme can be derived by combining ADI factorization and the
LU-SGS method. Detailed derivations of the formulations can be found in the references noted in this section.

The ideal MHD equations are expressed in general curvilinear coordinates ðn;g; fÞ as follows [10]:
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Here, Q is the vector of conservative variables, and E; F and G are the flux vectors in the n, g and f directions, respectively. The
detail general curvilinear coordinate transformations of the MHD equations are in Ref. [10]. In an implicit scheme, the right-
hand side of Eq. (1) is evaluated at the nþ 1 time level, and Eq. (1) can be written by discretizing the time term in the first-
order form as
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Here, Dt is the time step interval and DQ n ¼ Q nþ1 � Q n. Eq. (2) is rewritten using the linearization of the flux vectors pro-
posed by Beam and Warming [8], and then is expressed in the grid point as follows:
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Here, A;B and C are the flux Jacobian matrix of E; F and G, respectively. In a finite-volume method, Q i;j;k is the cell-averaged
conserved variable vector, and the numerical fluxes on the right side of the Eq. (3) are evaluated at the cell interface by any
MHD solvers. Eq. (3) may be modified specifically by the ADI factorization proposed by Beam and Warming [8] as described
below:
I þ Dt
@

@n
An

� �
i;j;k

I þ Dt
@

@g
Bn

� �
i;j;k

I þ Dt
@

@f
Cn

� �
i;j;k

DQ n
i;j;k ¼ RHSn

i;j;k: ð4Þ
Three operators in the left-hand side of this equation are calculated in order. We adopt the LU-SGS method [9] to calculate
each operator.

Diagonally dominant LDU factorization is applied to each directional operator on the left side of Eq. (4). This factorization
is used in LU-ADI scheme [11] and LU-SGS scheme [9]. The operator in the n direction becomes
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Here, Aþ and A� are the flux Jacobian matrices which have only positive and negative eigenvalues, and df
n and db

n are the for-
ward and backward derivatives, respectively. D ~~Q n
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The operators of Eq. (5), ðI � DtAn�
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i;j;kÞ=DnÞ�1 leads to the block-diagonal (D) matrix. Eq. (5) is calculated in

two steps as follows:
1: I � Dt
Dn

An�
i;j;k þ Dtdb

nAnþ
� �

D ~~Q n�
i;j;k ¼ RHSn

i;j;k; ð7Þ

2: I þ Dt
Dn

Anþ
i;j;k þ Dtdf

nAn�
� �

D ~~Q n
i;j;k ¼ I þ Dt

Dn
Anþ

i;j;k � An�
i;j;k

� �� �
D ~~Q n�

i;j;k: ð8Þ
In the LU-SGS method, A� is approximated as A� ¼ ðA� rnÞ=2, where rn is the spectral radius of A. From this approximation,
we can get the following discretized forms of Eqs. (7) and (8);
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D ~~Q n� can be obtained from the forward i-sweep calculation using Eq. (9), and D ~~Q n can be obtained from the backward i-
sweep calculation using Eq. (10). The operator in the g and f directions of Eq. (4) can be calculated using the same proce-
dures, and finally we obtain DQ n.
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On the right side of Eqs. (9) and (10), the Jacobian matrices have to be evaluated at each cell and matrix operations are
required. For the MHD equations, analytical evaluation and operation of these matrices are extremely complex procedures
[10]. However, these operations can be eliminated by following approximations [12]:
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This scheme is an efficient scheme for obtaining a steady state solution. The approximation ‘‘A� ¼ ðA� rnÞ=2” introduces
large numerical dissipation and hence this scheme cannot be straightforwardly applied to unsteady problems [9]. However,
we can make this method achieve higher-order time accuracy by applying the Newton–Raphson iterative algorithm [13]. The
advantages of this scheme are that the vectorization and parallelization are quite easy, because the n, g and f directional
operators can be separately calculated.

The ADI-SGS scheme turns into the LU-ADI scheme for linear problems, and therefore, the stability of the former for the
linear hyperbolic system can be discussed as being the same as the latter. The stability of the LU-ADI scheme is similar to the
standard ADI scheme [14], and linear stability analysis was conducted by Warming and Beam [15] for a standard ADI scheme
applied to linear partial differential equations. Their analysis showed unconditional stability in two dimensions, but uncon-
ditional instability in three dimensions. However, it was pointed out that the instability in three dimensions was weak and
could be controlled by numerical dissipation [14,16]. In actual practice with nonlinear problems, stability bounds exist,
although they are much less strict than the explicit stability bounds, and therefore, the actual stability bounds in a particular
problem have to be determined by numerical experimentation [16].

3. Numerical tests

To verify the effectiveness of the ADI-SGS scheme, a two-dimensional stationary MHD flow with a shock is simulated by
the ADI-SGS scheme with a finite-volume approximate Riemann solver. We adopt the TVD Lax–Friedrich scheme [17], which
Fig. 1. Computational settings and computational grid systems.
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is one of the most simple Riemann solver, and the MUSCL method with the MINMOD limiter is used to obtain 2nd-order
spatial accuracy. To treat the errors in r � B, the Powell’s source terms and the projection scheme are used [18]. Note that
the Powell’s source terms are evaluated explicitly for simplicity.
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Fig. 2. Simulation results: the density contours and the streamlines.

Fig. 3. Convergence history of the density residual toward a steady state.
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The numerical test problem is a stationary bow shock flow, in which the bow shock is formed by the obstruction of a uni-
form super-fast incoming flow by a rigid perfectly conducting circular cylinder [19]. Fig. 1(a) shows the computational set-
tings. Boundary conditions are implemented by using ghost cells. A uniform super-fast inflow with magnetic fields parallel to
the flow is imposed at the inflow boundary with the density q ¼ 1, the pressure p ¼ 0:2, the flow velocity vx ¼ 2 and the
magnetic flux density Bx ¼ 0:1. The radius of the perfectly conducting cylinder is 0.125, and at the cylinder wall boundary
and y ¼ 0 boundary, the ideal symmetry condition is implemented. The free outflow condition is implemented at the
x ¼ 0 boundary, that is the state variables of the ghost cells are extrapolated linearly with the last two physical cells. Initially,
the physical state in the computational domain is uniform with q ¼ 1; p ¼ 0:2;vx ¼ 2 and Bx ¼ 0:1.

The grid spacing in the n direction is uniform, but both the uniform and nonuniform grid spacing are used in the g direc-
tion as shown in Fig. 1. In the nonuniform grid, the largest grid spacing is about 20 times larger than the smallest grid spac-
ing. In addition, to analyze the grid convergence, the simulations are conducted in 3 grid cases; 60� 60;120� 120 and
240� 240. The grid spacings of the 120� 120 and 240� 240 grids are half the size of that of 60� 60 and 120� 120 grids,
respectively.

Fig. 2 shows the simulation results of the flow field. The density contours and streamlines are shown in this picture, and
the streamlines are also magnetic field lines. This result is in good agreement with the result in the previous study [19].

Fig. 3 shows the convergence history of the residual density (Rd) toward the steady state solution as a function of the CPU
time. The Rd is defined as
Fig. 4. Convergence time as a function of the CFL number.

Fig. 5. Comparison of the ADI-SGS scheme with the 2nd-order Runge–Kutta scheme: the convergence histories of the ADI-SGS scheme (AS) and the Runge–
Kutta scheme (RK).
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Here imax and jmax are the number of cells and the C0 is chosen to satisfy R1
d ¼ 0. We define that the steady state is achieved

when the Rd drops 4-orders of magnitude. The simulations are conducted for various CFL numbers (Cn) to investigate the
convergence performance of the scheme. The time step interval is derived at every time step as
Dt ¼ Cn min
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Xi;j is the area of the cell, nn;g are unit directional vectors in the n and g direction and ln;g are the width of the cell in the n and g
direction, respectively.

First, the dependency of the convergence performance on the grid resolution is discussed. The convergence times to the
steady state are plotted as a function of the CFL numbers for each grid resolution in Fig. 4. In the case of the uniform grid, the
maximum CFL numbers are 5.0, 3.5 and 3.0 in the 60� 60;120� 120 and 240� 240 grids, respectively. When larger CFL
numbers than these maximum values are chosen, the computations are unstable. Fig. 4(a) shows that the shortest conver-
gence time can be got at the largest CFL numbers. On the other hand, in the case of the nonuniform grid, the maximum CFL
numbers are 40.0, 30.0 and 20.0 in the 60� 60;120� 120 and 240� 240 grids, respectively, however the shortest conver-
gence time can be got when the CFL number is between 10.0 and 20.0 in all grid cases (as shown in Fig. 4(b)).

Next, the convergence performance of the ADI-SGS scheme is compared with that of the 2nd-order Runge–Kutta explicit
scheme. Fig. 5 shows the convergence histories of the ADI-SGS scheme and the 2nd-order Runge–Kutta scheme for each grid
resolution. Here, the CFL number is 0.7 in the case of the Runge–Kutta scheme, and in the case of the ADI-SGS scheme, the
CFL numbers are 5.0, 3.5, 3.0 and 10.0 in the uniform 60� 60;120� 120;240� 240 grids and the nonuniform grids, respec-
tively. Note that computational time for one time step of the Runge–Kutta scheme is almost equal to that of the ADI-SGS
scheme. Fig. 5(a) shows that the ADI-SGS scheme can get the steady state about twice as rapid as the Runge–Kutta scheme
for all grid resolutions in the case of the uniform grid. On the other hand, Fig. 5(b) shows that the ADI-SGS scheme can get the
steady state about six times as rapid as the Runge–Kutta scheme for all grid resolutions in the case of the nonuniform grid.

In these simulations, the maximum CFL number is restricted due to the initial transients in which the physical states vary
considerably. We can choose much larger CFL number by computing some dozen initial time steps with a smaller CFL num-
ber; the CFL number could be chosen larger than 100 in all grid cases in our simulations.

4. Conclusions

The ADI-SGS scheme are implemented to the ideal magnetohydrodynamic equations with a finite-volume method using a
Riemann solver. The ADI-SGS scheme is an implicit time integration scheme used for the hydrodynamic equations. In our
approach, the Jacobian-free technique is also used. To verify the convergence performance, a steady bow shock flow problem
was simulated, and following results were obtained.

� Smaller CFL number has to be used in the finer grid resolution, and much larger CFL number can be used in the nonuni-
form grid than in the uniform grid. However, the maximum CFL number is restricted due to the initial transients and so
computing some dozen initial time steps with a smaller CFL number is effective way.

� The ADI-SGS scheme improves the convergence performance compared with the Runge–Kutta scheme, and the effective-
ness of the ADI-SGS scheme is much better in the nonuniform grid than in the uniform grid.
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